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APPENDIX E 
 

REDUNDANCY AS A DESIGN TECHNIQUE 

 
E-1.  Introduction to redundancy as a design technique 
 
Redundancy can be defined as the existence of more than one means for accomplishing a given task.  In 
general, all means must fail before there is a system failure.  In chapter 2, we calculated the reliability of a 
redundant system.  We will now provide a more detailed explanation of the calculations involved. 

 
a. Simple parallel system.  Consider the system with two parallel elements shown in figure E-1, with  

A having a reliability RA and B having a reliability RB.  Define the probability of no failure as p and the 
probability of failure as q.  Then p + q = 1 and the probability of system failure, Q, would be qA qB.  
(figure E-2 summarizes the characteristics of simple parallel active redundancy.) 
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Figure E-1.  Simple parallel network. 
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Reliability Function for Simple 
Parallel Reliability 

 APPLICATION 
Provides protection against irreversible hardware failures for 
continuously operating equipments. 
 
 MATHEMATICAL MODEL 

 R = 1 - (1 - )  t-e λ n
 
 APPROXIMATE MODEL 

 R = 1 - (λt)  for small λt ≤ 0.1 n
 
where: 
 n  =  number of parallel elements 
 λ  =  failure rate 
 R  =  reliability 
 
ADVANTAGES OF PARALLEL REDUNDANCY 

• Simplicity 
• Significant gain in reliability 
• Applicable to both electronic (digital 

 
DISADVANTAGES OF PARALLEL REDUNDANCY 

• Load sharing must be considered 
• Sensitive to voltage division across the elements 
• Difficult to prevent failure propagation 
• May present electronic circuit design problems 

All blocks are 
assumed to be 
identical }

 
Figure E-2.  Summary of simple parallel redundancy. 

 
         (1)  Since reliability + unreliability = 1, the reliability, or probability of no failure, is given by R  =  1 
- Q  =  1 - qA qB. 
 
        (2)  If A has a reliability of 0.9 and B a reliability of 0.8, their unreliabilities qA and qB would be qA = 
1 - 0.9 = 0.1 and qB = 1 - 0.8 = 0.2 and the probability of system failure would be Q = (0.1)(0.2) = 0.02.  
Hence the system reliability would be R = 1 - Q = 0.98, which is a higher reliability than either of the 
elements acting singly.  Again, it should be pointed out that while redundancy reduces mission failures, it 
increases logistics failures.   
 
         (3)  In general, with n elements in parallel, the overall probability of failure at time t is Q(t) = q1(t) • 
q2(t) • . . . • qn(t) and the probability of operating without failure is given by R(t) = 1 - Q(t) = 1 - q1(t) • 
q2(t) • . . . • qn(t).  Because qi(t) = 1 - Ri(t) for each component, the latter equation can also be given as 
 
     RSystem(t) = 1 - [ 1 - R1(t)] [ 1 - R2(t)] . . . [ 1 - Rn(t)] 
 
          (4)  When each of the component reliabilities is equal, the previous equations reduce to 
 

Q(t) = [q(t)]n 

 
RSystem(t) = 1 - [q(t)]n = 1 - [1 - R(t)]n 
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     b.  Interactions.  So far it has been assumed that parallel components do not interact and that they are 
active all the time (or they may be activated when required by ideal failure sensing and switching 
devices).  Needless to say, the latter assumption, in particular, is difficult to meet in practice.  Therefore, 
the potential benefits of redundancy cannot be realized fully.  
 
     c.  Basic formulas.  Most cases of redundancy encountered will consist of various groupings of series 
and parallel elements.  Figure E-3 typifies such system.  The basic formulas previously given previously 
and in chapter 2 can be used to solve the overall system reliability RS as equal to 0.938. 
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Figure E-3.  Series-parallel redundancy system. 
 
     d.  Levels of redundancy.  Redundancy may be applied at the system level (essentially two systems in 
parallel) or at the subsystem, component, or part level within a system.  Figure E-4 is a simplified 
reliability block diagram drawn to illustrate the several levels at which redundancy can be applied.  
System I is shown with its redundant alternative II, at the system level.  II is in turn built up of redundant 
subsystems or components (B and C) and redundant parts within subsystems (b1 and b2 within subsystem 
B).  From the reliability block diagram and a definition of block or system success, the paths that result in 
successful system operation can be determined.  For example, the possible paths from input to output are 
[A, a, b1, C1], [A, a, b1, C2], [A, a, b2, C1], [A, a, b2, C2], and [I].  The success of each path may be 
computed by determining an assignable reliability value for each term and applying the multiplicative 
theorem.  The computation of system success (all paths combined) requires a knowledge of the type of 
redundancy to be used in each case and an estimate of individual element reliability (or unreliability). 
 

Subsystem A Part a

Part b1

Subsystem B 

System I 

System 
II 

Part b2

Component1 

Component2 

Subsystem C 

OutputInput 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure E-4.  Reliability block diagram depicting redundancy at the system, subsystem, component, and part levels. 
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     e.  Probability notation for redundancy computations.  Reliability of redundancy combinations is 
expressed in probabilistic terms of success or failure -- for a given mission period, a given number of 
operating cycles, or a given number of time independent "events," as appropriate.  The "MTBF" measure 
of reliability is not readily usable because of the non-exponential nature of the reliability function 
produced by redundancy.  Reliability of redundancy combinations that are "time dependent" is therefore 
computed at a discrete point in time, as a probability of success for this discrete time period.  The notation 
shown in figure E-5 is applicable to all cases and is used throughout this section. 
 

 R = probability of success or reliability of a unit or block 

 Q =   R  = probability of failure or unreliability of a unit or block 
 p = probability of success or reliability of an element 
 q = probability of failure or unreliability of an element 
 

For probability statements concerning an event: 
 

 P(A) = probability that A occurs 

 P( A ) = probability that A does not occur 
 

For the probabilities: 
 

 R + Q = 1 
 p + q = 1 

 P(A) + P( A ) = 1 
 

 
Figure E-5.  Probability notation for redundancy computations. 

 
     f.  Redundancy combinations.  The method of handling redundancy combinations can be generalized as 
follows. 
 
        (1) Parallel elements, series units.  If the elements are in parallel and the units in series (figure E-
6), first evaluate the redundant elements to get the unit reliability.  Then find the product of all unit 
reliabilities to obtain the block reliability.  In the redundancy combination shown in figure E-6, Unit A 
has 
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 UNIT A                           UNIT B                          UNIT C

 
Figure E-6.  Series-parallel configuration. 
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two parallel redundant elements, Unit B has three parallel redundant elements, and Unit C has only one 
element.  Assume that all elements are independent.  For Unit A to be successful, A1 or A2 must operate; 
for Unit B success, B1, B2 or B3 must operate; and C must always be operating for block success.  
Translated into probability terms, the reliability of figure F-6 becomes: 
 

[ ] [ ] P(C) • )BP( • )BP( • )BP( - 1 •  )AP( •AP( - 1  R 32121=  
 
If the probability of success, p, is the same for each element in a unit, 
 

C
3

B
2

A p •)p -  (1 - 1•)p - (1 - 1   R ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=  

C
3

B
2

A P  •)q - 1(•)q - (1 =  
 
where: 
 
  ii p - 1  q =
 
        (2)  Series elements, parallel units.  If the elements are in series and the units or paths are in parallel  
(figure E-7), first obtain the path reliability by calculating the product of the reliabilities of all elements in 
each path.  Then consider each path as a redundant unit to obtain the block reliability.  Often there is a 
 

A

B

(a) (b)

B1

A1 A2

B2 B3

 
 

 
Figure E-7.  Parallel-series configuration. 

 
combination of series and parallel redundancy in a block as shown in figure E-7a.  This arrangement can 
be converted into the simple parallel form shown in figure E-7b by first evaluating the series reliability of 
each path using the following equations (the terms on the right hand side represent element reliability): 
 

Ap  =  
21 aa p p

 

Bp  =  
321 bbb p p p

 
The block reliability can then be found from: 
 

)p - (1•)p - (1 - 1  R BA=  
 

BA q q - 1 =  
    
    g.  Redundancy in time dependent situations.  The reliability of elements used in redundant 
configurations is usually time dependent.  If the relation between element reliability and time is known, 
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inclusion of the time factor does not change the basic notation and approach to redundancy computation 
outlined above. 
 
         (1)  Example of redundancy in time dependent situations.  As an example, assume two active 
independent elements in parallel.  System reliability is given by: 
 

bababa pp - p  p  1 - 1  )p - )(1p - (1 - 1  R ++==  
 

baba pp - p  p  R +=  
 
          (2)  Expressing reliability over a period of time.  The former equation is applicable for one time 
interval.  To express reliability over a segment of time, the reliability of each element must be expressed 
as a function of time.  Hence, 
 

)t(
b

)t(
a

)t(
b

)t(
a p p - p  p  R(t) +=  

 
where: 
 
R(t) = system reliability for time t, t > 0 
and  = element reliabilities for time t )t(

b
)t(

a p , p
 
          (3)  When the exponential applies.  The failure pattern of some components is described by the 
exponential distribution: 
 

θλ == -t/t- e  e  R(t)  
 
where: 
 
λ is the constant failure rate; t is the time interval over which reliability, R, is measured; and θ is the 
mean-time-between-failure. 
 
          (4)  Two elements in series.  For two elements in series with constant failure rates  and aλ bλ , 
using the product rule of reliability gives: 
 

t)  -(t-t-)t(
b

)t(
a baba e  e e  p p  R(t) λ+λλλ ===  

 
          (5)  System reliability function for redundant element systems.  The system reliability, R(t), function 
for elements in series with constant failure rates is exponential.  With redundant elements present in the 
system, however, the system reliability function is not itself exponential.  This is illustrated by two 
operative parallel elements whose failure rates are constant.  From: 
 

baba pp - p   p  R(t) +=  
 

t)  -(t)-(t)-( baba e - e  e  R(t) λ+λλλ +=  
 
which is not of the simple exponential form .  Element failure rates cannot, therefore, be combined in 
the usual manner to obtain the system failure rate if considerable redundancy is inherent in the design. 

t-e λ
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         (6)  MTBF of redundant systems.  Although a single failure rate cannot be used for redundant 
systems with constant failure rate elements, the mean-time-to-failure of such systems can be evaluated.  
The mean life of a redundant "pair" whose failure rates are aλ  and bλ , respectively, can be determined 
from: 
 

babo a   
1 - 1  1 R(t)dt   MTBF

λ+λλ
+

λ
== ∫

∞
 

 
or, if the failure rates of both elements are equal, 
 

t-2t- e - 2e  R(t) λλ=  
and 
 

θ=
λ

=  
2
3  

2
3  MBTF  

 
         (7)  Three elements in parallel.  For three independent elements in parallel, the reliability function is: 
 

⎥⎦
⎤

⎢⎣
⎡= λλλ )e - )(1e - )(1e - (1 - 1  R(t) t-t-t- cba  

 
and 
 

 - 
  

1 - 
  

1 - 1  1  1  MTBF
cabacba λ+λλ+λλ

+
λ

+
λ

=  

 

cbacb     
1  

 - 
1

λ+λ+λ
+

λλ
 

 
    (8)  Reliability function for three elements in parallel.  For three independent elements in parallel 
when  =  = = λ, the reliability function is: aλ bλ cλ
 

t-t-2t- e  3e - 3e  R(t) λλλ +=  
 
and 
 

θ=
λ

=
λ

+
λ

+
λ

=
λ

+
λλ

=  
6

11  
6
11  

3
1  

2
1  1  

3
1  

2
3 - 3  MTBF  

 
         (9)  General rule.  In general, for n active parallel elements, each element having the same constant 
failure rate, λ, 
 

( )nt-e - 1 - 1  R(t) λ=  
 
and 
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     h.   Types of redundancy.  There are two basic types of redundancy:  active and standby. 
 
         (1)  Active redundancy.  External components are not required to perform the function of detection, 
decision and switching when an element or path in the structure fails.  The redundant units are always 
operating and automatically pick up the load for a failed unit.  An example is a multiengine aircraft.  The 
aircraft can continue to fly with one or more engines out of operation. 
      
          (2)  Standby redundancy.  External elements are required to detect, make a decision and switch to 
another element or path as a replacement for a failed element or path.  Standby units can be operating 
(e.g., a redundant radar transmitter feeding a dummy load is switched into the antenna when the main 
transmitter fails) or inactive (e.g., a backup generator is turned on when the primary power source fails). 
 
          (3)  Other forms of redundancy.  Table E-1 summarizes a variety of redundancy techniques.  The 
most important of these are discussed later in this appendix. 
 

Table E-1.  Redundancy techniques 
 

 

Simple Parallel Redundancy (Active Redundancy) 
 

 
 

 
 
 
 
 
In its simplest form, redundancy consists of a simple parallel 
combination of elements.  If any element fails open, identical 
paths exist through parallel redundant elements. 

 

(a)  Bimodal Parallel/Series Redundancy 
 

 
 

(b)  Bimodal Series/Parallel Redundancy 
 

 
 

 
 
 
 
 
A series connection of parallel redundant elements provides 
protection against electrical shorts and opens.  Direct short 
across the network due to a single element shorting is 
prevented by a redundant element in series.  An open across the 
network is prevented by the parallel element.  Network (a) is 
useful when the primary element failure mode is open.  
Network (b) is useful when the primary element failure mode is 
short. 
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Table E-1.  Redundancy techniques (Cont'd) 
 

 
Majority Voting Redundancy 
 

MVT

A1

A2

A3

An  
 

 
 
 
Decision can be built into the basic parallel redundant model by 
inputting signals from parallel elements into a voter to compare 
each element's signal with the signals of the other elements.  
Valid decisions are made only if the number of useful elements 
exceeds the failed elements. 

 
Adaptive Majority Logic 
 

MVT

A 1

A2

A 3

A n

Comp

 
 

 
 
 
 
 
This technique exemplifies the majority logic configuration 
discussed previously with a comparator and switching network 
to switch out or inhibit failed redundant elements. 

 
Standby Redundancy 
 

A 1

A 2

Output Power

Power
Output

A 1

A 2  
 

 
 
 
A particular redundant element of a parallel configuration can 
be switched into an active circuit by connecting outputs of each 
element to switch poles.  Two switching configurations are 
possible. 
 
The elements may be isolated by the switch until switching is 
completed and power applied to the element in the switching 
operation. 
 
All redundant elements are continuously connected to the 
circuit and a single redundant element activated by switching 
power to it. 
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Table E-1.  Redundancy techniques (Cont'd) 
 

 
Operating  Standby Redundancy 
 

S 1
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In this application, all redundant units operate simultaneously.  
A sensor on each unit detects failures.  When a unit fails, a 
switch at the output transfers to the next unit and remains there 
until failure. 
 
 

 
    i.  Limited benefits of redundancy.  In general, the reliability gain for additional redundant elements decreases 
rapidly for additions beyond a few parallel elements.  As illustrated by figure E-8 for simple parallel 
redundancy, there is a diminishing gain in reliability and MTBF as the number of redundant elements is 
increased.  As shown for the simple parallel case, the greatest gain achieved through addition of the first 
redundant element is equivalent to a 50% increase in the system MTBF.   
 
        (1)  Redundancy may not help.  The reliability of certain redundant configurations may actually be 
less than that of a single element due to the serial reliability of switching or other peripheral devices 
needed to implement the particular redundancy configuration.  Care must be exercised to ensure that 
reliability gains are not offset by increased failure rates due to switching devices, error detectors and other 
peripheral devices needed to implement the redundancy.  
 
        (2)  Increasing the effectiveness of redundancy.  The effectiveness of certain redundancy techniques 
(especially standby) can be enhanced by repair.  Standby redundancy allows repair of the failed unit 
(while operation of the good unit continues uninterrupted) by virtue of the switching function built into 
the standby redundant configuration.  Through continuous or interval monitoring, the switchover function 
can provide an indication that failure has occurred and operation is continuing on the alternate channel.  
With a positive failure indication, delays in repair are minimized.  A further advantage of switching is 
related to built-in test (BIT) objectives.  Built-in test can be readily incorporated into a sensing and 
switchover network for ease of maintenance purposes. 
 
         (3)  An example.  An illustration of the enhancement of redundancy with repair is shown in figure 
E-9.  The increased reliability brought about by incorporation of redundancy is dependent on effective 
isolation of redundant elements.  Isolation is necessary to prevent failure effects from adversely affecting 
other parts of the redundant network.  In some cases, fuses or circuit breakers, overload relays, etc., may 
be used to protect the redundant configuration.  These items protect a configuration from secondary 
effects of an item's failure so that system operation continues after the element failure.  The susceptibility 
of a particular redundant design to failure propagation may be assessed by using an FMEA.  The 
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particular techniques addressed there offer an effective method of identifying likely fault propagation 
paths. 
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a.  Simple active redundancy where one of n elements is required. 
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b.  Incremental increase in system MTBF for n active elements. 
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Figure E-8.  The gain in reliability decreases as the number of active elements increases. 
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Figure E-9.  Reliability gain for repair of simple parallel element at failure. 
 
     j.  Redundancy in protective circuits.  Redundancy may be incorporated into protective circuits1 as 
well as the functional circuit that it protects.  Operative redundancy configurations of protection devices 
(e.g., fuse, circuit breaker) can be used to reduce the possibility that the "protected" circuit is not 
completely disabled should the protective circuit device open prematurely or fail to open due to 
overcurrent. 
 
     k.  Checking status of redundancy.  The incorporation of redundancy into a design must take into 
account "checkability."  Some items may not be checkable prior to mission start.  Such items must then be 
assumed to be functional at the beginning of the mission.  In reality, pre-mission failures of redundant 
items could be masked.  If it is not known that redundant elements are operational prior to mission start, 
then the purpose of redundancy can be defeated because the possibility exists of starting a mission 
without the designed redundancy (a reliability loss).  The designer must take this into account for built-in 
test planning, inclusion of test points, packaging, etc., when redundancy is used in system design. 
 
     l.  k of N (Partial) Redundancy.  Instances in which the system is successful if at least one of n parallel 
paths is successful have been discussed.  In other instances, at least k out of n elements must be 
successful.  In such cases, the reliability of the redundant group (each with the same probability of 
success, p) is given by a series of additive binomial terms in the following form. 
 

 p) - (1 p )(   p)n  P(k, k-nkn
k=  

 
   (1)  Partial redundancy example 1.  A generator has three filters.  The generator will operate if at least 
two filters are operational, that is, if k = 2 or k = 3.  The probability of each channel being successful is 
equal to p; then 
 

R = P (2, 3⏐p) + P (3, 3⏐p) 
 

033
3

23
2 p) - (1 p   p) - (1 p   R ⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛=  

                                                           
1 It should be noted that the need for or usefulness of modeling reliability at the circuit level is not universally accepted.  In 
particular, many engineers question the value of such modeling for modern technologies.  Discussion of circuit-level modeling is 
included here since it may be of value in some instances. 
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32 p  p) - (1 3p  R +=  

 
32 2p - 3p  R =  

 
    (2)  Partial redundancy example 2.  Use of the binomial formula becomes impractical for hand 
calculation in multi-element partial redundant configurations when the values of n and k become large.2  
In these cases, the normal approximation to the binomial may be used.  The approach can be best 
illustrated by an example.  A transmitting array is designed using 1000 RF elements to achieve design 
goal performance for power output and beam width.  A design margin has been provided, however, to 
permit a 10% loss of RF elements before system performance becomes degraded below the acceptable 
minimum level.  Each element is known to have a failure rate of 1000 x 10-6 failures per hour.  The 
proposed design is illustrated in figure E-10, where the total number of elements is n = 1000; the number 
of elements required for system success is k = 900; and, the number of element failures permitted is r = 
100.  It is desired to compute and plot the reliability function for the array. 
 

1 2 3 998 999 1000

 
 
 
 
 
 
 
 
 

Figure E-10.  Partial redundant array. 
 
                (a)  For each discrete point of time, t, the system reliability function,  is given by the 
binomial summation as: 

tR s

 

xx-nr

0=x
s qp   

 x 
n  

      tR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑  

 

xt-
xn100

0x

t-1000
x e - 1 e    ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛= λ

−

=

λ∑  

 
where: 
 
 q =  t-e - 1 λ
 

 p =  t-e λ
 

 x = number of failures 
 

 λ = element failure rate 
 
               (b)  The binomial summation can be approximated by the standard normal distribution function 
using table E-2 to compute reliability for the normalized statistic z. 
 
 
                                                           
2 See any good textbook on probability and statistics. 
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Table E-2.  Reliability calculations for example 2 
 

Time, t z F(z) =  )t(R s
90 1.570 0.9420 
95 0.989 0.8389 
105 0.000 0.5000 
110 -0.420 0.3370 
120 -1.300 0.0970 
130 -2.030 0.0210 

                                               Note that  =  F(z) )t(R s
 
 where: 

tt-

t-

e)e - 1(n

)e - n(1 -x   
npq

nq -x    -x   z
λ−λ

λ
==

σ
µ

=  

 
               (c)  By observation, it can be reasoned that system MTBF will be approximately 100 hours, since 
100 element failures are permitted and one element fails each hour of system operation.  A preliminary 
selection of discrete points at which to compute reliability might then fall in the 80- to 100-hour bracket.  
Table E-3 shows the calculations. 
 

Table E-3.  MTBF calculations for example 2 
At 80 Hours: 
 

  0.077  e - 1  e - 1  q 80) • -610 • (1000-t- === λ
 

  0.923  e  p 80) • -610 • (1000- ==
 

  77  )e - (1 1000  qn  80) • -610 • (1000- ===µ
 

 8.4  71.07  )(0.923)1000(0.077  npq  ====σ  
 

 x = 100 
 

 2.74  
8.4

77 - 100  z80 ==  
 

 , from standard normal tables 0.997  2.74)F(  )F(z  (80)R 80s =+==
 
At 100 Hours: 
 

  95  )e - (1 1000  nq  100 • -610 • 1000- ===µ
 

  0.905  e  p 100 • -610 • 1000- ==
 

 9.3  86  npq  ===σ  
 

 x = 100 
 

 0.54  
9.3

9.5 - 100  z100 ==  
 

  0.705  0.54)F(  )F(z  (100)R 100s =+==
 

These points are then used to plot the reliability function for the array, shown in Figure E-11.  Also 
shown in the figure are curves for r = 0, 50, and 150. 
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Figure E-11.  Reliability functions for partial redundant array of figure E-10. 
 
     m.  Operating standby redundancy.  Until now we have assumed that switching devices were either 
absent or failure free.  We now deal with cases whose redundant elements are continuously energized but 
do not become part of the system until switched in after a primary element fails.  We will consider two 
modes of failure that can be associated with the switching mechanism:  Type 1 - The switch may fail to 
operate when it is supposed to; and Type 2 - The switch may operate without command (prematurely).  In 
the discussions that follow,  = probability of a Type 1 failure, and  = probability of a Type 2 failure.  
Note that the probability of switching failures must be considered in modeling redundancy with 
switching.  The consideration of such failures can be complex.  If the switching reliability is high in 
comparison with element reliability (i.e., switch failure rate is one-tenth that of the element failure rate), it 
is often possible to simplify the model with an acceptable loss of accuracy by ignoring switch failures.   

sq sq'

 
          (1)  Two parallel elements.  Consider the system in figure E-12.  There are three possible states that 
could lead to system failure.  In state 1, A fails, B succeeds, and the switch fails (Type 1 failure).  In state 
2, A succeeds, B fails, and the switch fails (Type 2 failure).  In state 3, A fails and B fails.  The 
calculations for the system reliability are shown in the figure. 
 
          (2)  Three Parallel Elements.  Figure E-13 illustrates this type circuit.  It operates as follows:  If A 
fails, S switches to B.  If B then fails, S switches to C.  Enumerating all possible switching failures shows 
two kinds of Type (1) failure and four kinds of Type (2) failure as shown in the figure. 
 
     n.  Voting Redundancy.  Figure E-14 shows three elements, A, B, and C, and the associated switching 
and comparator circuit which make up a voting redundant system.  The circuit function will always be 
performed by an element whose output agrees with the output of at least one of the other elements.  At 
least two good elements are required for successful operation of the circuit.  Two switches are provided so 
that a comparison of any two outputs of the three elements can be made.  A comparator circuit is required 
that will operate the two switches so that a position is located where the outputs again agree after one 
element fails. 
 
           (1) Perfect switching and comparison.  If comparison and switching are failure free, the system 
will be successful as long as two or three elements are successful.  In this case, 
 

cbacbcaba p p 2p - p p  p p  p p  R ++=  
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The unreliability of the system, Q, is  
 

basbasqa q q  q p q  q' p p  Q ++=  
 
The reliability of the system, R, is 
 

)q q  q p q  q' p (p - 1  Q - 1  R basbasqa ++==  
 
Example:  Assume 
 

0.1  q'  q and 0.2  q  q ssba ====  
 
Then 
 

basbasqa q q  q p q  q' p p  Q ++=  
 

= (0.8)(0.2)(0.1) + (0.2)(0.8)(0.1) + (0.2)(0.2) = 0.072 
 

R = 1 – Q = 1 - 0.072 = 0.928 
 

If we are not concerned with Type (2) failures,  = 0, and the unreliability is sq'
 

basba q q  q p q  Q +=  
 

= (0.2)(0.8)(0.1)  +  (0.2)(0.2) = 0.056 
 

R = 1  -  0.056 = 0.944 
 

 

Figure E-12.  Redundancy with switching. 
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Type (1) Switching Failures: 
 

•  - A fails, S does not switch to B. 
1s

q

•  - A fails, S switches to B, B fails, S fails to switch to C. 
2sq

 

Type (2) Switching Failures: 
 

•  - A succeeds, but S switches to B. 
3sq'

•  - A succeeds, S switches to B, B fails, S does not switch to 

C. 
4sq'

• - A succeeds, S switches to B, B succeeds, S switches to C. 
5sq'

• - A fails, S switches to B, B succeeds, S switches to C. 
6sq'

 
 

Figure E-13.  Three-element redundant configuration with switching. 
 
 

B

A

C

COMPARATOR

 
 

Figure E-14.  Three-element voting redundancy. 
 
          (2)  Imperfect switching.  If failure free switching cannot be assumed, conditional probabilities of 
switching operation have to be considered.  To simplify the discussion, consider the probability of the 
comparator and switches failing in such a manner that the switches remain in their original positions.  If 
this probability is , then sq
 

)q - (1 )p p 2p - p p  p (p  p p  R scbacbcaba ++=  
 
           (3)  Example.  Here is an example of a voting redundant system (information and expressions for 
the general majority voting case are given in figure E-15).  Let all three elements have the same 
probability of success, 0.9, i.e.,  =  =  = 0.9.  Assume that the comparator switch has a 
probability of failing ( ) of 0.01. 

ap bp cp

sq
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Reliability Function for Majority Voting Redundancy 
 
ADVANTAGES 
• Can be implemented to provide indication of 

defective elements 
• Can provide a significant gain in reliability for short 

mission times (less than one MTBF) 
 

DISADVANTAGES 
• Requires voter reliability be significantly better than 

that of element  
• Lower reliability for long mission time (greater than 

one MTBF) 
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Reliability For Mission Time Less 
Than One MTBF 

 
APPLICATION 

Generally used with logic circuitry for either continuous or 
intermittent operation.  This technique with minor modification, 
may be put in the form of adaptive majority logic or gate 
connector redundancy 
 

MATHEMATICAL MODEL 
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Figure E-15.  Majority voting redundancy. 

 
     o.  Inactive standby redundancy.  In a system with redundant elements on an inactive standby basis 
(not energized), no time is accumulated on a secondary element until a primary element fails.  For a two-
element system, the reliability function can be found directly as follows.  The system will be successful at 
time t if either of the following two conditions holds (let A be the primary element):  A is successful up to 
time t. or A fails at time  <  t, and B operates from  to t. 1t 1t

 
          (1)  The exponential case.  For the exponential case where the element failure rates are  and aλ bλ , 
the reliability of the standby pair is given by the following equation. 
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tb-

ab

ata-

ab

b e 
 - 

 - e 
 - 

  R(t)
λλ

λλ

λ

λλ

λ
=  

 
(This is a form of the mixed exponential and it does not matter whether the more reliable element is used 
as the primary or as the standby element.) 
 
          (2)  MTBF.  The mean-time-to-failure of the system just described is 
 

ba

ba   
  MTBF

λλ

λ+λ
=  

 

ba   θ+θ  
 

θ=θ=θθ=      when ,2 ba  
 
          (3)  Multiple elements.  For n elements of equal reliability, it can be shown that, 
 

∑
=

λ λ
=

1-n

0r

r
t-

!r
t)(   e  R(t)  

 
where: 
 
 r is the number of failures 
 

 MTBF = θ=
λ

n  n  

 
          (4)  Inactive standby redundancy as a function of mission time.  Figure E-16 is a chart relating 
system reliability to the reliability of individual operating standby redundant parallel elements as a 
function of mission time, t/ .  By entering the chart at the time period of interest and proceeding 
vertically to the allocated reliability requirement, the required number of standby elements can be 
determined. 

θ
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Figure E-16.  System reliability for n standby redundant elements. 
 
          (5)  Example of inactive standby redundancy.  A critical element within a system has a 
demonstrated MTBF,  = 100 hours.  A design requirement has been allocated to the function performed 
by this element of R

θ
s = 0.98 at 100 hours.  This corresponds to a 30-to-1 reduction in unreliability 

compared with that which can be achieved by a single element.  In this case, n = 4 will satisfy the design 
requirement at t/  = 1.  In other words, a four-element standby redundant configuration would satisfy the 
requirement.  Failure rates of switching devices must next be taken into account. 

θ

 
     p.  Dependent failure probabilities.  Up to this point, it has been assumed that the failure of an 
operative redundant element has no effect on the failure rates of the remaining elements.  Dependent 
failures might occur, for example, with a system having two elements in parallel where both elements 
share the full load. 
 
          (1)  Conditional events.  Figure E-17 illustrates an example of conditional or dependent events.  
Assume elements A and B are both fully energized, and normally share or carry half the load, L/2.  If 
either A or B fails, the survivor must carry the full load, L.  Hence, the probability that one fails is 
dependent on the state of the other, if failure probability is related to load or stress.  The system is 
operating satisfactorily at time t if either A or B or both are operating successfully. 
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Figure E-17.  Load sharing redundant configuration. 
 
             (a)   Figure E-18 illustrates the three possible ways the system can be successful.  The bar above a 
letter represents a failure of that element.  A primed letter represents operation of that element under full 
load; absence of a prime represents operation under half load.  If the elements' failure times are 
exponentially distributed and each has a mean life of θ  under load L/2 and θ ' = /k under load L where 
k ≥ 0, block reliability and system mean life are given by: 

θ

 
θθ

θθ
θ

θθ
θ

= 2t/-'t/- e 
 - '2

 - e 
 - '2
'2  R(t)  

 
θ  = θ /k + θ /2 

 
             (b)  When k = 1, the system is one in which load sharing is not present or an increased load does 
not affect the element failure probability.  Thus, for this case, sθ s is equal to 3 θ /2. 
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Figure E-18.  Success combinations in two-element load-sharing case. 
 
     q.  Optimum allocation of redundancy.  Decision and switching devices may fail to switch when 
required or may operate inadvertently.  However, these devices are usually necessary for redundancy, and 
increasing the number of redundant elements increases the number of switching devices.  If such devices 
are completely reliable, redundancy is most effective at lower system levels.  If switching devices are not 
failure free, the problem of increasing system reliability through redundancy becomes one of choosing an 
optimum level at which to replicate elements. 
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          (1)  Redundancy is not free.  Since cost, weight, and complexity factors are always involved, the 
minimum amount of redundancy that will produce the desired reliability should be used.  Thus efforts 
should be concentrated on those parts of the system that are the major causes of system unreliability.  
 
          (2)  Example.  Assume that we have two elements, A and B, with reliabilities over a certain time 
period of 0.95 and 0.50, respectively.  If A and B are joined to form a series non-redundant circuit, its 
reliability is 
 

R = (0.95)(0.50) = 0.475 
 
     (a)  If we duplicate each element, as in figure E-19a,  
 

R1 = [1 - (0.50)2] [1 - (0.05)2]  =  0.748 
 
                (b)  Duplicating element B only, as in figure E-19b, 
 

R2 = 0.95  [1 - (0.50) 2] = 0.712 
 
                (c)  Obviously, duplicating element A contributes little to increasing reliability.  Triplication of 
B gives the configuration shown in figure E-19c and R3 = 0.95  [1 - (0.5)3]  = 0.831, which is a 75% 
increase in the original circuit reliability as compared to the 58% increase of R1. 
 
              (d)  If complexity is the limiting factor, duplicating systems is generally preferred to duplicating 
elements, especially if switching devices are necessary.  If another series path is added in parallel, we 
have the configuration in figure E-19d, and R4 = 1 - (1 - 0.475)4 = 0.724, which is only slightly less than 
R1.  If switches are necessary for each redundant element, R4 may be the best configuration.  A careful 
analysis of the effect of each element and switch on system reliability is a necessary prerequisite for 
proper redundancy application. 
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(d)  
Figure E-19.  Possible alternative redundant configurations for optimization example.  Baseline is a series system 

with two elements, A and B. 
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